06/07/2020

Laplacian pyramid-based complex neural network learning for fast MR imaging

Haoyun Liang, Yu Gong, Hoel Kervadec, Cheng Li, Jing Yuan, Xin Liu, Hairong Zheng, Shanshan Wang

Keywords:

Abstract: A Laplacian pyramid-based complex neural network, CLP-Net, is proposed to reconstruct high-quality magnetic resonance images from undersampled k-space data. Specifically, three major contributions have been made: 1) A new framework has been proposed to explore the encouraging multi-scale properties of Laplacian pyramid decomposition; 2) A cascaded multi-scale network architecture with complex convolutions has been designed under the proposed framework; 3) Experimental validations on an open source dataset fastMRI demonstrate the encouraging properties of the proposed method in preserving image edges and fine textures.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at MIDL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers