06/07/2020

End-to-end learning of convolutional neural net and dynamic programming for left ventricle segmentation

Nhat M. Nguyen, Nilanjan Ray

Keywords:

Abstract: Differentiable programming is able to combine different functions or modules in a data processing pipeline with the goal of applying gradient descent-based end-to-end learning or optimization. A significant impediment to differentiable programming is the non-differentiable nature of some functions. We propose to overcome this difficulty by using neural networks to approximate such modules. An approximating neural network provides synthetic gradients (SG) for backpropagation across a non-differentiable module. Our design is grounded on a well-known theory that gradient of an approximating neural network can approximate a sub-gradient of a weakly differentiable function. We apply SG to combine convolutional neural network (CNN) with dynamic programming (DP) in end-to-end learning for segmenting left ventricle from short axis view of heart MRI. Our experiments show that end-to-end combination of CNN and DP requires fewer labeled images to achieve a significantly better segmentation accuracy than using only CNN.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at MIDL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers