01/07/2020

Learning Probabilistic Sentence Representations from Paraphrases

Mingda Chen, Kevin Gimpel

Keywords:

Abstract: Probabilistic word embeddings have shown effectiveness in capturing notions of generality and entailment, but there is very little work on doing the analogous type of investigation for sentences. In this paper we define probabilistic models that produce distributions for sentences. Our best-performing model treats each word as a linear transformation operator applied to a multivariate Gaussian distribution. We train our models on paraphrases and demonstrate that they naturally capture sentence specificity. While our proposed model achieves the best performance overall, we also show that specificity is represented by simpler architectures via the norm of the sentence vectors. Qualitative analysis shows that our probabilistic model captures sentential entailment and provides ways to analyze the specificity and preciseness of individual words.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACL Workshops virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers