05/12/2020

Beyond fine-tuning: Few-sample sentence embedding transfer

Siddhant Garg, Rohit Kumar Sharma, Yingyu Liang

Keywords:

Abstract: Fine-tuning (FT) pre-trained sentence embedding models on small datasets has been shown to have limitations. In this paper we show that concatenating the embeddings from the pre-trained model with those from a simple sentence embedding model trained only on the target data, can improve over the performance of FT for few-sample tasks. To this end, a linear classifier is trained on the combined embeddings, either by freezing the embedding model weights or training the classifier and embedding models end-to-end. We perform evaluation on seven small datasets from NLP tasks and show that our approach with end-to-end training outperforms FT with negligible computational overhead. Further, we also show that sophisticated combination techniques like CCA and KCCA do not work as well in practice as concatenation. We provide theoretical analysis to explain this empirical observation.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AACL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers