16/11/2020

Temporal Knowledge Base Completion: New Algorithms and Evaluation Protocols

Prachi Jain, Sushant Rathi, Mausam, Soumen Chakrabarti

Keywords: predicting entities, link prediction, time prediction, prediction tasks

Abstract: Research on temporal knowledge bases, which associate a relational fact (s,r,o) with a validity time period (or time instant), is in its early days. Our work considers predicting missing entities (link prediction) and missing time intervals (time prediction) as joint Temporal Knowledge Base Completion (TKBC) tasks, and presents TIMEPLEX, a novel TKBC method, in which entities, relations and, time are all embedded in a uniform, compatible space. TIMEPLEX exploits the recurrent nature of some facts/events and temporal interactions between pairs of relations, yielding state-of-the-art results on both prediction tasks. We also find that existing TKBC models heavily overestimate link prediction performance due to imperfect evaluation mechanisms. In response, we propose improved TKBC evaluation protocols for both link and time prediction tasks, dealing with subtle issues that arise from the partial overlap of time intervals in gold instances and system predictions.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EMNLP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers