16/11/2020

Discourse Self-Attention for Discourse Element Identification in Argumentative Student Essays

Wei Song, Ziyao Song, Ruiji Fu, Lizhen Liu, Miaomiao Cheng, Ting Liu

Keywords: self-attention, structural encodings, inter-sentence attentions, sentence representation

Abstract: This paper proposes to adapt self-attention to discourse level for modeling discourse elements in argumentative student essays. Specifically, we focus on two issues. First, we propose structural sentence positional encodings to explicitly represent sentence positions. Second, we propose to use inter-sentence attentions to capture sentence interactions and enhance sentence representation. We conduct experiments on two datasets: a Chinese dataset and an English dataset. We find that (i) sentence positional encoding can lead to a large improvement for identifying discourse elements; (ii) a structural relative positional encoding of sentences shows to be most effective; (iii) inter-sentence attention vectors are useful as a kind of sentence representations for identifying discourse elements.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EMNLP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers