16/11/2020

A Synset Relation-enhanced Framework with a Try-again Mechanism for Word Sense Disambiguation

Ming Wang, Yinglin Wang

Keywords: word disambiguation, word, sense enhancement, contextual embeddings

Abstract: Contextual embeddings are proved to be overwhelmingly effective to the task of Word Sense Disambiguation (WSD) compared with other sense representation techniques. However, these embeddings fail to embed sense knowledge in semantic networks. In this paper, we propose a Synset Relation-Enhanced Framework (SREF) that leverages sense relations for both sense embedding enhancement and a try-again mechanism that implements WSD again, after obtaining basic sense embeddings from augmented WordNet glosses. Experiments on all-words and lexical sample datasets show that the proposed system achieves new state-of-the-art results, defeating previous knowledge-based systems by at least 5.5 F1 measure. When the system utilizes sense embeddings learned from SemCor, it outperforms all previous supervised systems with only 20% SemCor data.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EMNLP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers