16/11/2020

Don't Neglect the Obvious: On the Role of Unambiguous Words in Word Sense Disambiguation

Daniel Loureiro, Jose Camacho-Collados

Keywords: word disambiguation, word, wsd, pre-trained models

Abstract: State-of-the-art methods for Word Sense Disambiguation (WSD) combine two different features: the power of pre-trained language models and a propagation method to extend the coverage of such models. This propagation is needed as current sense-annotated corpora lack coverage of many instances in the underlying sense inventory (usually WordNet). At the same time, unambiguous words make for a large portion of all words in WordNet, while being poorly covered in existing sense-annotated corpora. In this paper, we propose a simple method to provide annotations for most unambiguous words in a large corpus. We introduce the UWA (Unambiguous Word Annotations) dataset and show how a state-of-the-art propagation-based model can use it to extend the coverage and quality of its word sense embeddings by a significant margin, improving on its original results on WSD.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EMNLP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers