Home
Papertalks
About
Help
Improve
Upload
Login
Register
Login Required
×
You have to login to use this feature.
Title
Abstract
Keywords
Authors
exact
AAAI 2021
AACL 2020
ACCV 2020
ACL 2020
ACL Workshops
ACM-CHIL 2020
ACML 2020
AISTATS 2020
AISTATS 2021
AKBC 2020
BMVC 2020
BMVC 2021
CHI 2020
CIKM 2020
COLING 2020
COLING Workshops 2020
COLT 2020
COLT 2021
CoRL 2020
CVPR 2020
DCASE 2020
EACL 2021
ECML PKDD 2020
EMNLP 2020
ESWC 2020
FOCI 2020
HotCloud 2020
HotEdge 2020
HotStorage 2020
ICALP 2020
ICAPS 2020
ICFP 2020
ICLR 2020
ICLR 2021
ICML 2020
ICML 2021
ICN 2020
ICWSM 2020
ICWSM 2021
IJCAI 2021
ISMIR 2020
KDD 2020
KR 2020
L@S 2020
MIDL 2020
MLHC 2020
MLSYS 2021
MSML 2020
MSR 2020
NeurIPS 2020
NeurIPS 2021
OOPSLA 2020
OpML 2020
OSDI 2020
PLDI 2020
PLDI 2021
PODC 2020
POPL 2020
RECSYS 2020
SIGCOMM 2020
SIGDIAL 2020
SIGGRAPH 2020
SIGIR 2020
SOUPS 2020
SPAA 2020
STOC 2020
UAI 2020
USENIX ATC 2020
USENIX Security 2020
WACV 2021
WOOT 2020
RECSYS 2020
Arts and Music
Biology
Chemistry
Computer Science
Economics
Engineering
Geoscience
History
Law
Humanities
Mathematics
Medical Sciences
Neuroscience
Physics
Politics
Psychology
Social Sciences
All dates
Today
Last week
Last month
Last year
Reset
Hide
Hide
Hide
Sort by:
Default
Date (upload)
Date (paper)
Likes
Stars
Views
Duration
Random
Search match
102
papertalks found
22/09/2020
Counterfactual learning for recommender system
Zhenhua Dong
,
Hong Zhu
,
Pengxiang Cheng
and
Xinhua Feng
,
Guohao Cai
,
Xiuqiang He
,
Jun Xu
,
Jirong Wen
Keywords
Abstract
Paper
Counterfactual learning
,
Recommender systems
,
Causality
2:17
22/09/2020
SSE-PT: Sequential recommendation via personalized transformer
Liwei Wu
,
Shuqing Li
,
Cho-Jui Hsieh
,
James Sharpnack
Keywords
Abstract
Paper
stochastic shared embeddings
,
recommender system
,
neural networks
,
temporal collaborative ranking
,
sequential recommendation
,
personalized transformer
2:29
22/09/2020
A joint dynamic ranking system with DNN and vector-based clustering bandit
Yu Liu
,
Xiaoxiao Xu
,
Jincheng Wang
and
Yong Li
,
Changping Peng
,
Yongjun Bao
,
Weipeng P.Yan
Keywords
Abstract
Paper
Multi-arm bandits
,
Learning to rank
2:21
22/09/2020
Revisiting adversarially learned injection attacks against recommender systems
Jiaxi Tang
,
Hongyi Wen
,
Ke Wang
Keywords
Abstract
Paper
Recommender System
,
Security and Privacy
,
Adversarial Machine Learning
2:13
22/09/2020
Behavior-based popularity ranking on amazon video
Lakshmi Ramachandran
Keywords
Abstract
Paper
recommendations
,
popularity
,
video streaming
1:21
22/09/2020
ClusterExplorer: Enable user control over related recommendations via collaborative filtering and clustering
Denis Kotkov
,
Qian Zhao
,
Kati Launis
,
Mats Neovius
Keywords
Abstract
Paper
critiquing recommender systems
,
recommender systems
,
user control
,
information exploration tool
,
conversational recommender systems
,
related item recommendations
,
user interfaces
,
interactive recommendation
2:38
22/09/2020
RecSeats: A hybrid convolutional neural network choice model for seat recommendations at reserved seating venues
Théo Moins
,
Daniel Aloise
,
Simon J. Blanchard
Keywords
Abstract
Paper
machine learning
,
locational choice
,
recommender system
,
choice models
2:04
22/09/2020
Towards safety and sustainability: Designing local recommendations for post-pandemic world
Gourab K Patro
,
Abhijnan Chakraborty
,
Ashmi Banerjee
,
Niloy Ganguly
Keywords
Abstract
Paper
Local Recommendation
,
Yelp
,
COVID-19
,
Safety
,
Social Distancing
,
Google Local
,
Sustainability
,
Bipartite Matching
2:29
22/09/2020
Exploring data splitting strategies for the evaluation of recommendation models
Zaiqiao Meng
,
Richard McCreadie
,
Craig Macdonald
,
Iadh Ounis
Keywords
Abstract
Paper
Temporal Split
,
Leave-one-out
,
Model Evaluation
,
Recommender Systems
,
Spliting Strategy
2:50
22/09/2020
Combining rating and review data by initializing latent factor models with topic models for top-n recommendation
Francisco J. Peña
,
Diarmuid O’Reilly-Morgan
,
Elias Z. Tragos
and
Neil Hurley
,
Erika Duriakova
,
Barry Smyth
,
Aonghus Lawlor
Keywords
Abstract
Paper
2:25
22/09/2020
Smart targeting: A relevance-driven and configurable targeting framework for advertising system
Yong Li
,
Zihao Zhao
,
Zhiwei Fang
and
Kui Ma
,
Yafei Yao
,
Changping Peng
,
Yongjun Bao
,
Weipeng Yan
Keywords
Abstract
Paper
Targeted Advertising
,
Tag-wise Targeting
,
Smart Targeting
2:36
22/09/2020
A method to anonymize business metrics to publishing implicit feedback datasets
Yoshifumi Seki
,
Takanori Maehara
Keywords
Abstract
Paper
recommender systems
,
datasets
1:43
22/09/2020
The connection between popularity bias, calibration, and fairness in recommendation
Himan Abdollahpouri
,
Masoud Mansoury
,
Robin Burke
,
Bamshad Mobasher
Keywords
Abstract
Paper
Calibration
,
Algorithmic bias
,
Recommender systems
,
Popularity bias amplification
2:20
22/09/2020
Goal-driven command recommendations for analysts
Samarth Aggarwal
,
Rohin Garg
,
Abhilasha Sancheti
and
Bhanu Prakash Reddy Guda
,
Iftikhar Ahamath Burhanuddin
Keywords
Abstract
Paper
user goals
,
context-aware recommendation
,
application logs
,
topic modeling
,
command recommendation
2:45
22/09/2020
Learning representations of hierarchical slates in collaborative filtering
Ehtsham Elahi
,
Ashok Chandrashekar
Keywords
Abstract
Paper
collaborative filtering
,
embeddings
,
hierarchical slates
,
recommender systems
,
user models
2:51
22/09/2020
Debiasing item-to-item recommendations with small annotated datasets
Tobias Schnabel
,
Paul N. Bennett
Keywords
Abstract
Paper
neural networks
,
datasets
,
gaze detection
,
text tagging
1:58
22/09/2020
Personality bias of music recommendation algorithms
Alessandro B. Melchiorre
,
Eva Zangerle
,
Markus Schedl
Keywords
Abstract
Paper
music recommender systems
,
neural networks
,
personality
,
bias
,
dataset
2:09
22/09/2020
Do channels matter? Illuminating interpersonal influence on music recommendations
Hyun Jeong Kim
,
So Yeon Park
,
Minju Park
,
Kyogu Lee
Keywords
Abstract
Paper
music recommendation channels
,
user evaluation
,
interpersonal relationships
2:12
22/09/2020
PicTouRe - a picture-based tourism recommender
Mete Sertkan
,
Julia Neidhardt
,
Hannes Werthner
Keywords
Abstract
Paper
preference elicitation
,
tourist
,
picture-based
,
tourism
,
travel-behaviour
2:20
22/09/2020
Causal inference for recommender systems
Yixin Wang
,
Dawen Liang
,
Laurent Charlin
,
David M. Blei
Keywords
Abstract
Paper
unobserved confounding
,
causal inference
,
recommender systems
1:47
22/09/2020
Ensuring fairness in group recommendations by rank-sensitive balancing of relevance
Mesut Kaya
,
Derek Bridge
,
Nava Tintarev
Keywords
Abstract
Paper
fairness
,
group recommendations
2:33
22/09/2020
DRecPy: A python framework for developing deep learning-based recommenders
Fábio Colaço
,
Márcia Barros
,
Francisco M. Couto
Keywords
Abstract
Paper
extensibility
,
reproducibility
,
evaluation
,
implementation
,
deep learning
2:43
22/09/2020
Demonstrating principled uncertainty modeling for recommender ecosystems with RecSim NG
Martin Mladenov
,
Chih-wei Hsu
,
Vihan Jain
and
Eugene Ie
,
Christopher Colby
,
Nicolas Mayoraz
,
Hubert Pham
,
Dustin Tran
,
Ivan Vendrov
,
Craig Boutilier
Keywords
Abstract
Paper
Probabilistic Programming
,
Reinforcement Learning
,
Latent Variable Models
1:01
22/09/2020
Model size reduction using frequency based double hashing for recommender systems
Caojin Zhang
,
Yicun Liu
,
Yuanpu Xie
and
Sofia Ira Ktena
,
Alykhan Tejani
,
Akshay Gupta
,
Pranay Kumar Myana
,
Deepak Dilipkumar
,
Suvadip Paul
,
Ikuhiro Ihara
,
Prasang Upadhyaya
,
Ferenc Huszar
,
Wenzhe Shi
Keywords
Abstract
Paper
neural networks
,
recommendation system
,
model size reduction
3:00
22/09/2020
Recommender-systems.com: A central platform for the recommender-system community
Joeran Beel
Keywords
Abstract
Paper
Resources
,
Recommender Systems
,
Portal
,
Platform
3:19
22/09/2020
Contextual meta-bandit for recommender systems selection
Marlesson R. O. Santana
,
Luckeciano C. Melo
,
Fernando H. F. Camargo
and
Bruno Brandão
,
Anderson Soares
,
Renan M. Oliveira
,
Sandor Caetano
Keywords
Abstract
Paper
contextual bandits
,
hierarchical recommender systems
,
options framework
,
reinforcement learning
1:48
22/09/2020
From the lab to production: A case study of session-based recommendations in the home-improvement domain
Pigi Kouki
,
Ilias Fountalis
,
Nikolaos Vasiloglou
and
Xiquan Cui
,
Edo Liberty
,
Khalifeh Al Jadda
Keywords
Abstract
Paper
session-based recommendations
,
comparison of offline evaluation metrics with labels from human experts
,
evaluation using human experts
,
A/B test
2:42
22/09/2020
“Don’t judge a book by its cover”: Exploring book traits children favor
Ashlee Milton
,
Levesson Batista
,
Garrett Allen
and
Siqi Gao
,
Yiu-Kai D Ng
,
Maria Soledad Pera
Keywords
Abstract
Paper
metadata
,
books
,
preferences
,
recommender systems
,
children
1:29
22/09/2020
Contextual and sequential user embeddings for large-scale music recommendation
Casper Hansen
,
Christian Hansen
,
Lucas Maystre
and
Rishabh Mehrotra
,
Brian Brost
,
Federico Tomasi
,
Mounia Lalmas
Keywords
Abstract
Paper
Sequence
,
Music Recommendation
,
User Embeddings
,
Context
2:03
22/09/2020
Building a reciprocal recommendation system at scale from scratch: Learnings from one of japan’s prominent dating applications
R. Ramanathan
,
Nicolas K. Shinada
,
Sucheendra K. Palaniappan
Keywords
Abstract
Paper
online dating
,
neural networks
,
reciprocal recommender systems
2:01
22/09/2020
What does BERT know about books, movies and music? Probing BERT for conversational recommendation
Gustavo Penha
,
Claudia Hauff
Keywords
Abstract
Paper
conversational recommendation
,
conversational search
,
probing
2:48
22/09/2020
A federated recommender system for online services
Ben Tan
,
Bo Liu
,
Vincent Zheng
,
Qiang Yang
Keywords
Abstract
Paper
Recommender Systems
,
Federated Learning
1:40
22/09/2020
A human perspective on algorithmic similarity
Zachary A. Schendel
,
Faraz Farzin
,
Siddhi Sundar
Keywords
Abstract
Paper
iMDS
,
Similarity
,
Perception
,
Netflix
,
Inverse Multidimensional Scaling
,
Context
2:21
22/09/2020
A ranking optimization approach to latent linear critiquing for conversational recommender systems
Hanze Li
,
Scott Sanner
,
Kai Luo
,
Ga Wu
Keywords
Abstract
Paper
Critiquing
,
Conversational Recommendation
2:54
22/09/2020
Recommending the video to watch next: An offline and online evaluation at YOUTV.de
Panagiotis Symeonidis
,
Andrea Janes
,
Dmitry Chaltsev
and
Philip Giuliani
,
Daniel Morandini
,
Andreas Unterhuber
,
Ludovik Coba
,
Markus Zanker
Keywords
Abstract
Paper
session-based recommendation
,
offline and online evaluation
2:23
22/09/2020
Learning to collaborate in multi-module recommendation via multi-agent reinforcement learning without communication
Xu HE
,
Bo An
,
Yanghua Li
and
Haikai Chen
,
Rundong Wang
,
Xinrun Wang
,
Runsheng Yu
,
Xin Li
,
Zhirong Wang
Keywords
Abstract
Paper
Reinforcement learning
2:43
22/09/2020
Performance of hyperbolic geometry models on top-n recommendation tasks
Leyla Mirvakhabova
,
Evgeny Frolov
,
Valentin Khrulkov
and
Ivan Oseledets
,
Alexander Tuzhilin
Keywords
Abstract
Paper
Hyperbolic Geometry
,
Collaborative Filtering
,
Autoencoders
,
Top-N Recommendation
2:24
22/09/2020
ImRec: Learning reciprocal preferences using images
James Neve
,
Ryan McConville
Keywords
Abstract
Paper
Siamese Networks
,
Social Recommendation
,
Content-Based Recommendation
,
Reciprocal Recommender Systems
2:28
22/09/2020
Contextual user browsing bandits for large-scale online mobile recommendation
Xu HE
,
Bo An
,
Yanghua Li
and
Haikai Chen
,
Qingyu Guo
,
Xin Li
,
Zhirong Wang
Keywords
Abstract
Paper
Combinatorial bandit
,
Position bias
,
Contextual bandit
2:32
22/09/2020
MultiRec: A multi-relational approach for unique item recommendation in auction systems
Ahmed Rashed
,
Shayan Jawed
,
Lars Schmidt-Thieme
,
Andre Hintsches
Keywords
Abstract
Paper
Auction Systems
,
Collaborative Filtering
,
Attribute-Aware Recommender Systems
,
Multi-Relational Learning
,
Unique Item Recommendation
2:06
«
1
2
3
»