Home
Papertalks
About
Help
Improve
Upload
Login
Register
Login Required
×
You have to login to use this feature.
Title
Abstract
Keywords
Authors
exact
AAAI 2021
AACL 2020
ACCV 2020
ACL 2020
ACL Workshops
ACM-CHIL 2020
ACML 2020
AISTATS 2020
AISTATS 2021
AKBC 2020
BMVC 2020
BMVC 2021
CHI 2020
CIKM 2020
COLING 2020
COLING Workshops 2020
COLT 2020
COLT 2021
CoRL 2020
CVPR 2020
DCASE 2020
EACL 2021
ECML PKDD 2020
EMNLP 2020
ESWC 2020
FOCI 2020
HotCloud 2020
HotEdge 2020
HotStorage 2020
ICALP 2020
ICAPS 2020
ICFP 2020
ICLR 2020
ICLR 2021
ICML 2020
ICML 2021
ICN 2020
ICWSM 2020
ICWSM 2021
IJCAI 2021
ISMIR 2020
KDD 2020
KR 2020
L@S 2020
MIDL 2020
MLHC 2020
MLSYS 2021
MSML 2020
MSR 2020
NeurIPS 2020
NeurIPS 2021
OOPSLA 2020
OpML 2020
OSDI 2020
PLDI 2020
PLDI 2021
PODC 2020
POPL 2020
RECSYS 2020
SIGCOMM 2020
SIGDIAL 2020
SIGGRAPH 2020
SIGIR 2020
SOUPS 2020
SPAA 2020
STOC 2020
UAI 2020
USENIX ATC 2020
USENIX Security 2020
WACV 2021
WOOT 2020
COLT 2020
Arts and Music
Biology
Chemistry
Computer Science
Economics
Engineering
Geoscience
History
Law
Humanities
Mathematics
Medical Sciences
Neuroscience
Physics
Politics
Psychology
Social Sciences
All dates
Today
Last week
Last month
Last year
Reset
Hide
Hide
Hide
Sort by:
Default
Date (upload)
Date (paper)
Likes
Stars
Views
Duration
Random
Search match
120
papertalks found
09/07/2020
Adaptive Submodular Maximization under Stochastic Item Costs
Srinivasan Parthasarathy
Keywords
Abstract
Paper
Combinatorial optimization
,
Approximation algorithms
,
Non-convex optimization
,
Stochastic optimization
13:24
09/07/2020
Bounds in query learning
Hunter S Chase
,
James Freitag
Keywords
Abstract
Paper
Interactive learning
,
Active learning
,
Supervised learning
14:26
09/07/2020
How to trap a gradient flow
Dan Mikulincer
,
Sebastien Bubeck
Keywords
Abstract
Paper
Non-convex optimization
,
15:01
09/07/2020
Efficient Parameter Estimation of Truncated Boolean Product Distributions
Dimitris Fotakis
,
Alkis Kalavasis
,
Christos Tzamos
Keywords
Abstract
Paper
Distribution learning/testing
,
14:51
09/07/2020
How Good is SGD with Random Shuffling?
Itay M Safran
,
Ohad Shamir
Keywords
Abstract
Paper
Convex optimization
,
11:50
09/07/2020
Learning Halfspaces with Massart Noise Under Structured Distributions
Ilias Diakonikolas
,
Vasilis Kontonis
,
Christos Tzamos
,
Nikos Zarifis
Keywords
Abstract
Paper
PAC learning
,
14:56
09/07/2020
Last Iterate is Slower than Averaged Iterate in Smooth Convex-Concave Saddle Point Problems
Noah Golowich
,
Sarath Pattathil
,
Constantinos Daskalakis
,
Asuman Ozdaglar
Keywords
Abstract
Paper
Convex optimization
,
Economics
,
game theory
,
and incentives
,
Non-convex optimization
15:11
09/07/2020
Winnowing with Gradient Descent
Ehsan Amid
,
Manfred K. Warmuth
Keywords
Abstract
Paper
Online learning
,
14:22
09/07/2020
Sharper Bounds for Uniformly Stable Algorithms
Olivier Bousquet
,
Yegor Klochkov
,
Nikita Zhivotovskiy
Keywords
Abstract
Paper
Excess risk bounds and generalization error bounds
,
Adversarial learning and robustness
,
Concentration inequalities
,
Privacy
,
fairness
14:24
09/07/2020
Improper Learning for Non-Stochastic Control
Max Simchowitz
,
Karan Singh
,
Elad Hazan
Keywords
Abstract
Paper
Reinforcement learning
,
Online learning
,
Planning and control
13:28
09/07/2020
Online Learning with Vector Costs and Bandits with Knapsacks
Thomas Kesselheim
,
Sahil Singla
Keywords
Abstract
Paper
Online learning
,
Approximation algorithms
,
Bandit problems
15:18
09/07/2020
Extending Learnability to Auxiliary-Input Cryptographic Primitives and Meta-PAC Learning
Mikito Nanashima
Keywords
Abstract
Paper
PAC learning
,
Computational complexity
13:33
09/07/2020
Logsmooth Gradient Concentration and Tighter Runtimes for Metropolized Hamiltonian Monte Carlo
Yin Tat Lee
,
Ruoqi Shen
,
Kevin Tian
Keywords
Abstract
Paper
Sampling algorithms
,
Bayesian methods
14:57
09/07/2020
The Gradient Complexity of Linear Regression
Mark Braverman
,
Elad Hazan
,
Max Simchowitz
,
Blake E Woodworth
Keywords
Abstract
Paper
Randomized linear algebraic methods and sketching
,
Convex optimization
11:43
09/07/2020
Learning Over-Parametrized Two-Layer ReLU Neural Networks beyond NTK
Yuanzhi Li
,
Tengyu Ma
,
Hongyang R Zhang
Keywords
Abstract
Paper
Neural networks/deep learning
,
Matrix/tensor estimation
,
Non-convex optimization
14:08
09/07/2020
A Fast Spectral Algorithm for Mean Estimation with Sub-Gaussian Rates
Zhixian Lei
,
Kyle Luh
,
Prayaag Venkat
,
Fred Zhang
Keywords
Abstract
Paper
High-dimensional statistics
,
Adversarial learning and robustness
15:00
09/07/2020
Wasserstein Control of Mirror Langevin Monte Carlo
Kelvin Shuangjian Zhang
,
Gabriel Peyré
,
Jalal Fadili
,
Marcelo Pereyra
Keywords
Abstract
Paper
Sampling algorithms
,
Convex optimization
,
Stochastic optimization
15:01
09/07/2020
Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond
Oliver Hinder
,
Aaron Sidford
,
Nimit S Sohoni
Keywords
Abstract
Paper
Non-convex optimization
,
12:57
09/07/2020
Pessimism About Unknown Unknowns Inspires Conservatism
Michael K Cohen
,
Marcus Hutter
Keywords
Abstract
Paper
Reinforcement learning
,
Bayesian methods
15:02
09/07/2020
Complexity Guarantees for Polyak Steps with Momentum
Mathieu Barre
,
Adrien B Taylor
,
Alexandre d'Aspremont
Keywords
Abstract
Paper
Convex optimization
,
14:05
09/07/2020
Faster Projection-free Online Learning
Elad Hazan
,
Edgar Minasyan
Keywords
Abstract
Paper
Online learning
,
Convex optimization
15:04
09/07/2020
List Decodable Subspace Recovery
Morris Yau
,
prasad raghavendra
Keywords
Abstract
Paper
Adversarial learning and robustness
,
High-dimensional statistics
,
Unsupervised and semi-supervised learning
15:02
09/07/2020
Learning Polynomials in Few Relevant Dimensions
Sitan Chen
,
Raghu Meka
Keywords
Abstract
Paper
Regression
,
Convex optimization
,
High-dimensional statistics
,
Non-convex optimization
15:03
09/07/2020
Bessel Smoothing and Multi-Distribution Property Estimation
Yi Hao
,
Ping Li
Keywords
Abstract
Paper
Distribution learning/testing
,
High-dimensional statistics
,
Information theory
14:48
09/07/2020
Active Local Learning
Arturs Backurs
,
Avrim Blum
,
Neha Gupta
Keywords
Abstract
Paper
Active learning
,
Supervised learning
12:30
09/07/2020
From tree matching to sparse graph alignment
Luca Ganassali
,
Laurent Massoulie
Keywords
Abstract
Paper
High-dimensional statistics
,
Statistical physics
15:37
09/07/2020
Privately Learning Thresholds: Closing the Exponential Gap
Haim Kaplan
,
Katrina Ligett
,
Yishay Mansour
and
Moni Naor
,
Uri Stemmer
Keywords
Abstract
Paper
Privacy
,
fairness
,
PAC learning
14:44
09/07/2020
A Closer Look at Small-loss Bounds for Bandits with Graph Feedback
Chung-Wei Lee
,
Haipeng Luo
,
Mengxiao Zhang
Keywords
Abstract
Paper
Bandit problems
,
Online learning
14:52
09/07/2020
A Greedy Anytime Algorithm for Sparse PCA
Dan Vilenchik
,
Adam Soffer
,
Guy Holtzman
Keywords
Abstract
Paper
Non-convex optimization
,
Combinatorial optimization
,
Computational complexity
,
High-dimensional statistics
,
Unsupervised and semi-supervised learning
15:31
09/07/2020
Efficient, Noise-Tolerant, and Private Learning via Boosting
Mark Bun
,
Marco L Carmosino
,
Jessica Sorrell
Keywords
Abstract
Paper
Privacy
,
fairness
,
Excess risk bounds and generalization error bounds
,
PAC learning
11:50
09/07/2020
Hardness of Identity Testing for Restricted Boltzmann Machines and Potts models
Antonio Blanca
,
Zongchen Chen
,
Eric Vigoda
,
Daniel Stefankovic
Keywords
Abstract
Paper
Distribution learning/testing
,
Computational complexity
,
Learning from complex/structured data (e.g. networks
,
time series)
15:20
09/07/2020
High probability guarantees for stochastic convex optimization
Damek Davis
,
Dmitriy Drusvyatskiy
Keywords
Abstract
Paper
Stochastic optimization
,
Computational complexity
,
Convex optimization
,
Excess risk bounds and generalization error bounds
15:10
09/07/2020
Approximate is Good Enough: Probabilistic Variants of Dimensional and Margin Complexity
Pritish Kamath
,
Omar Montasser
,
Nathan Srebro
Keywords
Abstract
Paper
Kernel methods
,
PAC learning
14:48
09/07/2020
Halpern Iteration for Near-Optimal and Parameter-Free Monotone Inclusion and Strong Solutions to Variational Inequalities
Jelena Diakonikolas
Keywords
Abstract
Paper
Convex optimization
,
Non-convex optimization
15:04
09/07/2020
Logistic Regression Regret: What’s the Catch?
Gil I Shamir
Keywords
Abstract
Paper
Online learning
,
Convex optimization
,
Information theory
,
Regression
16:03
09/07/2020
Non-Stochastic Multi-Player Multi-Armed Bandits: Optimal Rate With Collision Information, Sublinear Without
Sebastien Bubeck
,
Yuanzhi Li
,
Yuval Peres
,
Mark Sellke
Keywords
Abstract
Paper
Bandit problems
,
10:13
09/07/2020
Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks Trained with the Logistic Loss
Lénaïc Chizat
,
Francis Bach
Keywords
Abstract
Paper
Neural networks/deep learning
,
Non-convex optimization
14:41
09/07/2020
Free Energy Wells and Overlap Gap Property in Sparse PCA
Gerard Ben Arous
,
Alexander S. Wein
,
Ilias Zadik
Keywords
Abstract
Paper
High-dimensional statistics
,
Matrix/tensor estimation
,
Statistical physics
15:01
09/07/2020
Highly smooth minimization of non-smooth problems
Brian Bullins
Keywords
Abstract
Paper
Convex optimization
,
Regression
12:55
09/07/2020
Universal Approximation with Deep Narrow Networks
Patrick Kidger
,
Terry J Lyons
Keywords
Abstract
Paper
Neural networks/deep learning
,
Regression
13:40
«
1
2
3
»