06/12/2020

Improving Auto-Augment via Augmentation-Wise Weight Sharing

Keyu Tian, Chen Lin, Ming Sun, Luping Zhou, Junjie Yan, Wanli Ouyang

Keywords:

Abstract: The recent progress on automatically searching augmentation policies has boosted the performance substantially for various tasks. A key component of automatic augmentation search is the evaluation process for a particular augmentation policy, which is utilized to return reward and usually runs thousands of times. A plain evaluation process, which includes full model training and validation, would be time-consuming. To achieve efficiency, many choose to sacrifice evaluation reliability for speed. In this paper, we dive into the dynamics of augmented training of the model. This inspires us to design a powerful and efficient proxy task based on the Augmentation-Wise Weight Sharing (AWS) to form a fast yet accurate evaluation process in an elegant way. Comprehensive analysis verifies the superiority of this approach in terms of effectiveness and efficiency. The augmentation policies found by our method achieve superior accuracies compared with existing auto-augmentation search methods. On CIFAR-10, we achieve a top-1 error rate of 1.24%, which is currently the best performing single model without extra training data. On ImageNet, we get a top-1 error rate of 20.36% for ResNet-50, which leads to 3.34% absolute error rate reduction over the baseline augmentation.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers