06/12/2020

Duality-Induced Regularizer for Tensor Factorization Based Knowledge Graph Completion

Zhanqiu Zhang, Jianyu Cai, Jie Wang

Keywords:

Abstract: Tensor factorization based models have shown great power in knowledge graph completion (KGC). However, their performance usually suffers from the overfitting problem seriously. This motivates various regularizers---such as the squared Frobenius norm and tensor nuclear norm regulariers---while the limited applicability significantly limits their practical usage. To address this challenge, we propose a novel regularizer---namely, \textbf{DU}ality-induced \textbf{R}egul\textbf{A}rizer (DURA)---which is not only effective in improving the performance of existing models but widely applicable to various methods. The major novelty of DURA is based on the observation that, for an existing tensor factorization based KGC model (\textit{primal}), there is often another distance based KGC model (\textit{dual}) closely associated with it.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers