06/12/2020

Online Linear Optimization with Many Hints

Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, Manish Purohit

Keywords:

Abstract: We study an online linear optimization (OLO) problem in which the learner is provided access to $K$ ``hint'' vectors in each round prior to making a decision. In this setting, we devise an algorithm that obtains logarithmic regret whenever there exists a convex combination of the $K$ hints that has positive correlation with the cost vectors. This significantly extends prior work that considered only the case $K=1$. To accomplish this, we develop a way to combine many arbitrary OLO algorithms to obtain regret only a logarithmically worse factor than the minimum regret of the original algorithms in hindsight; this result is of independent interest.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers