06/12/2020

Acceleration with a Ball Optimization Oracle

Yair Carmon, Arun Jambulapati, Qijia Jiang, Yujia Jin, Yin Tat Lee, Aaron Sidford, Kevin Tian

Keywords:

Abstract: Consider an oracle which takes a point x and returns the minimizer of a convex function f in an l_2 ball of radius r around x. It is straightforward to show that roughly r^{-1}\log(1/epsilon) calls to the oracle suffice to find an \epsilon-approximate minimizer of f in an l_2 unit ball. Perhaps surprisingly, this is not optimal: we design an accelerated algorithm which attains an epsilon-approximate minimizer with roughly r^{-2/3} \log(1/epsilon) oracle queries, and give a matching lower bound. Further, we implement ball optimization oracles for functions with a locally stable Hessian using a variant of Newton's method and, in certain cases, stochastic first-order methods. The resulting algorithms apply to a number of problems of practical and theoretical import, improving upon previous results for logistic and l_infinity regression and achieving guarantees comparable to the state-of-the-art for l_p regression.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers