06/12/2020

Introducing Routing Uncertainty in Capsule Networks

Fabio De Sousa Ribeiro, Georgios Leontidis, Stef Kollias

Keywords:

Abstract: Rather than performing inefficient local iterative routing between adjacent capsule layers, we propose an alternative global view based on representing the inherent uncertainty in part-object assignment. In our formulation, the local routing iterations are replaced with variational inference of part-object connections in a probabilistic capsule network, leading to a significant speedup without sacrificing performance. In this way, global context is also considered when routing capsules by introducing global latent variables that have direct influence on the objective function, and are updated discriminatively in accordance with the minimum description length (MDL) principle. We focus on enhancing capsule network properties, and perform a thorough evaluation on pose-aware tasks, observing improvements in performance over previous approaches whilst being more computationally efficient.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers