06/12/2020

Bayesian filtering unifies adaptive and non-adaptive neural network optimization methods

Laurence Aitchison

Keywords:

Abstract: We formulate the problem of neural network optimization as Bayesian filtering, where the observations are backpropagated gradients. While neural network optimization has previously been studied using natural gradient methods which are closely related to Bayesian inference, they were unable to recover standard optimizers such as Adam and RMSprop with a root-mean-square gradient normalizer, instead getting a mean-square normalizer. To recover the root-mean-square normalizer, we find it necessary to account for the temporal dynamics of all the other parameters as they are optimized. The resulting optimizer, AdaBayes, adaptively transitions between SGD-like and Adam-like behaviour, automatically recovers AdamW, a state of the art variant of Adam with decoupled weight decay, and has generalisation performance competitive with SGD.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers