06/12/2020

Planning with General Objective Functions: Going Beyond Total Rewards

Ruosong Wang, Peilin Zhong, Simon Du, Russ Salakhutdinov, Lin Yang

Keywords: Algorithms -> Classification; Theory -> Frequentist Statistics, Theory -> Learning Theory

Abstract: Standard sequential decision-making paradigms aim to maximize the cumulative reward when interacting with the unknown environment., i.e., maximize $\sum_{h = 1}^H r_h$ where $H$ is the planning horizon. However, this paradigm fails to model important practical applications, e.g., safe control that aims to maximize the lowest reward, i.e., maximize $\min_{h= 1}^H r_h$. In this paper, based on techniques in sketching algorithms, we propose a novel planning algorithm in deterministic systems which deals with a large class of objective functions of the form $f(r_1, r_2, ... r_H)$ that are of interest to practical applications. We show that efficient planning is possible if $f$ is symmetric under permutation of coordinates and satisfies certain technical conditions. Complementing our algorithm, we further prove that removing any of the conditions will make the problem intractable in the worst case and thus demonstrate the necessity of our conditions.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers