06/12/2020

BAIL: Best-Action Imitation Learning for Batch Deep Reinforcement Learning

Xinyue Chen, Zijian Zhou, Zheng Wang, Che Wang, Yanqiu Wu, Keith Ross

Keywords: Probabilistic Methods -> Variational Inference, Probabilistic Methods

Abstract: There has recently been a surge in research in batch Deep Reinforcement Learning (DRL), which aims for learning a high-performing policy from a given dataset without additional interactions with the environment. We propose a new algorithm, Best-Action Imitation Learning (BAIL), which strives for both simplicity and performance. BAIL learns a V function, uses the V function to select actions it believes to be high-performing, and then uses those actions to train a policy network using imitation learning. For the MuJoCo benchmark, we provide a comprehensive experimental study of BAIL, comparing its performance to four other batch Q-learning and imitation-learning schemes for a large variety of batch datasets. Our experiments show that BAIL's performance is much higher than the other schemes, and is also computationally much faster than the batch Q-learning schemes.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers