06/12/2020

Deep Reinforcement and InfoMax Learning

Bogdan Mazoure, Remi Tachet des Combes, Thang Doan, Philip Bachman, R Devon Hjelm

Keywords:

Abstract: We posit that a reinforcement learning (RL) agent will perform better when it uses representations that are better at predicting the future, particularly in terms of few-shot learning and domain adaptation. To test that hypothesis, we introduce an objective based on Deep InfoMax (DIM) which trains the agent to predict the future by maximizing the mutual information between its internal representation of successive timesteps. We provide an intuitive analysis of the convergence properties of our approach from the perspective of Markov chain mixing times, and argue that convergence of the lower bound on mutual information is related to the inverse absolute spectral gap of the transition model. We test our approach in several synthetic settings, where it successfully learns representations that are predictive of the future. Finally, we augment C51, a strong distributional RL agent, with our temporal DIM objective and demonstrate on a continual learning task (inspired by Ms.~PacMan) and on the recently introduced Procgen environment that our approach improves performance, which supports our core hypothesis.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers