06/12/2020

Optimal Lottery Tickets via Subset Sum: Logarithmic Over-Parameterization is Sufficient

Ankit Pensia, Shashank Rajput, Alliot Nagle, Harit Vishwakarma, Dimitrios Papailiopoulos

Keywords: Reinforcement Learning and Planning -> Model-Based RL; Reinforcement Learning and Planning -> Planning; Reinforcement Learning , Reinforcement Learning and Planning

Abstract: The strong lottery ticket hypothesis (LTH) postulates that one can approximate any target neural network by only pruning the weights of a sufficiently over-parameterized random network. A recent work by Malach et al. [MYSS20] establishes the first theoretical analysis for the strong LTH: one can provably approximate a neural network of width $d$ and depth $l$, by pruning a random one that is a factor $O(d^4 l^2)$ wider and twice as deep. This polynomial over-parameterization requirement is at odds with recent experimental research that achieves good approximation with networks that are a small factor wider than the target. In this work, we close the gap and offer an exponential improvement to the over-parameterization requirement for the existence of lottery tickets. We show that any target network of width $d$ and depth $l$ can be approximated by pruning a random network that is a factor $O(log(dl))$ wider and twice as deep. Our analysis heavily relies on connecting pruning random ReLU networks to random instances of the Subset Sum problem. We then show that this logarithmic over-parameterization is essentially optimal for constant depth networks. Finally, we verify several of our theoretical insights with experiments.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers