06/12/2020

A Limitation of the PAC-Bayes Framework

Roi Livni, Shay Moran

Keywords:

Abstract: PAC-Bayes is a useful framework for deriving generalization bounds which was introduced by McAllester ('98). This framework has the flexibility of deriving distribution- and algorithm-dependent bounds, which are often tighter than VC-related uniform convergence bounds. In this manuscript we present a limitation for the PAC-Bayes framework. We demonstrate an easy learning task which is not amenable to a PAC-Bayes analysis. Specifically, we consider the task of linear classification in 1D; it is well-known that this task is learnable using just $O(\log(1/\delta)/\epsilon)$ examples. On the other hand, we show that this fact can not be proved using a PAC-Bayes analysis: for any algorithm that learns 1-dimensional linear classifiers there exists a (realizable) distribution for which the PAC-Bayes bound is arbitrarily large.

 1
 1
 1
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers