06/12/2020

Private Learning of Halfspaces: Simplifying the Construction and Reducing the Sample Complexity

Haim Kaplan, Yishay Mansour, Uri Stemmer, Eliad Tsfadia

Keywords:

Abstract: We present a differentially private learner for halfspaces over a finite grid $G$ in $\R^d$ with sample complexity $\approx d^{2.5}\cdot 2^{\log^*|G|}$, which improves the state-of-the-art result of [Beimel et al., COLT 2019] by a $d^2$ factor. The building block for our learner is a new differentially private algorithm for approximately solving the linear feasibility problem: Given a feasible collection of $m$ linear constraints of the form $Ax\geq b$, the task is to {\em privately} identify a solution $x$ that satisfies {\em most} of the constraints. Our algorithm is iterative, where each iteration determines the next coordinate of the constructed solution $x$.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers