16/11/2020

Reconfigurable Voxels: A New Representation for LiDAR-Based Point Clouds

Tai Wang, Xinge Zhu, Dahua Lin

Keywords:

Abstract: LiDAR is an important method for autonomous driving systems to sense the environment. The point clouds obtained by LiDAR typically exhibit sparse and irregular distribution, thus posing great challenges to the detection of 3D objects, especially those that are small and distant. To tackle this difficulty, we propose Reconfigurable Voxels, a new approach to constructing representations from 3D point clouds. Specifically, we devise a biased random walk scheme, which adaptively covers each neighborhood with a fixed number of voxels based on the local spatial distribution and produces a representation by integrating the points in the chosen neighbors. We found empirically that this approach effectively improves the stability of voxel features, especially for sparse regions. Experimental results on multiple benchmarks, including nuScenes, Lyft, and KITTI, show that this new representation can remarkably improve the detection performance for small and distant objects, without incurring noticeable overhead cost .

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CoRL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers