26/08/2020

Multi-attribute Bayesian optimization with interactive preference learning

Raul Astudillo, Peter Frazier

Keywords:

Abstract: We consider black-box global optimization of time-consuming-to-evaluate functions on behalf of a decision-maker (DM) whose preferences must be learned. Each feasible design is associated with a time-consuming-to-evaluate vector of attributes and each vector of attributes is assigned a utility by the DM's utility function, which may be learned approximately using preferences expressed over pairs of attribute vectors. Past work has used a point estimate of this utility function as if it were error-free within single-objective optimization. However, utility estimation errors may yield a poor suggested design. Furthermore, this approach produces a single suggested “best” design, whereas DMs often prefer to choose from a menu. We propose a novel multi-attribute Bayesian optimization with preference learning approach. Our approach acknowledges the uncertainty in preference estimation and implicitly chooses designs to evaluate that are good not just for a single estimated utility function but a range of likely ones. The outcome of our approach is a menu of designs and evaluated attributes from which the DM makes a final selection. We demonstrate the value and flexibility of our approach in a variety of experiments.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers