26/08/2020

Gain with no Pain: Efficiency of Kernel-PCA by Nystr\'om Sampling

Nicholas Sterge, Bharath Sriperumbudur, Lorenzo Rosasco, Alessandro Rudi

Keywords:

Abstract: In this paper, we analyze a Nystr\'om based approach to efficient large scale kernel principal component analysis (PCA). The latter is a natural nonlinear extension of classical PCA based on considering a nonlinear feature map or the corresponding kernel. Like other kernel approaches, kernel PCA enjoys good mathematical and statistical properties but, numerically, it scales poorly with the sample size. Our analysis shows that Nystr\'om sampling greatly improves computational efficiency without incurring any loss of statistical accuracy. While similar effects have been observed in supervised learning, this is the first such result for PCA. Our theoretical findings are based on a combination of analytic and concentration of measure techniques. Our study is more broadly motivated by the question of understanding the interplay between statistical and computational requirements for learning.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers