26/08/2020

The True Sample Complexity of Identifying Good Arms

Julian Katz-Samuels, Kevin Jamieson

Keywords:

Abstract: We consider two multi-armed bandit problems with $n$ arms: \emph{(i)} given an $\epsilon > 0$, identify an arm with mean that is within $\epsilon$ of the largest mean and \emph{(ii)} given a threshold $\mu_0$ and integer $k$, identify $k$ arms with means larger than $\mu_0$. Existing lower bounds and algorithms for the PAC framework suggest that both of these problems require $\Omega(n)$ samples. However, we argue that the PAC framework not only conflicts with how these algorithms are used in practice, but also that these results disagree with intuition that says \emph{(i)} requires only $\Theta(\frac{n}{m})$ samples where $m = |\{ i : \mu_i > \max_{j \in [n]} \mu_j - \epsilon\}|$ and \emph{(ii)} requires $\Theta(\frac{n}{m}k)$ samples where $m = |\{ i : \mu_i > \mu_0 \}|$. We provide definitions that formalize these intuitions, obtain lower bounds that match the above sample complexities, and develop explicit, practical algorithms that achieve nearly matching upper bounds.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers