11/10/2020

A Deep Learning Based Analysis-synthesis Framework for Unison Singing

Pritish Chandna, Helena Cuesta, Emilia Gomez

Keywords: MIR tasks, Music synthesis and transformation, Applications, Music retrieval systems, Evaluation, datasets, and reproducibility, Human-centered MIR, User-centered evaluation, Musical features and properties, Expression and performative aspects of music

Abstract: Unison singing is the name given to an ensemble of singers simultaneously singing the same melody and lyrics. While each individual singer in a unison sings the same principle melody, there are slight timing and pitch deviations between the singers, which, along with the ensemble of timbres, give the listener a perceived sense of "unison". In this paper, we present a study of unison singing in the context of choirs; utilising some recently proposed deep-learning based methodologies, we analyse the fundamental frequency (F0) distribution of the individual singers in recordings of unison mixtures. Based on the analysis, we propose a system for synthesising a unison signal from an a cappella input and a single voice prototype representative of a unison mixture. We use subjective listening test to evaluate perceptual factors of our proposed system for synthesis, including quality, adherence to the melody as well the degree of perceived unison.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ISMIR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers