09/07/2020

Highly smooth minimization of non-smooth problems

Brian Bullins

Keywords: Convex optimization, Regression

Abstract: We establish improved rates for structured \emph{non-smooth} optimization problems by means of near-optimal higher-order accelerated methods. In particular, given access to a standard oracle model that provides a $p^{th}$ order Taylor expansion of a \emph{smoothed} version of the function, we show how to achieve $\eps$-optimality for the \emph{original} problem in $\tilde{O}_p\pa{\eps^{-\frac{2p+2}{3p+1}}}$ calls to the oracle. Furthermore, when $p=3$, we provide an efficient implementation of the near-optimal accelerated scheme that achieves an $O(\eps^{-4/5})$ iteration complexity, where each iteration requires $\tilde{O}(1)$ calls to a linear system solver. Thus, we go beyond the previous $O(\eps^{-1})$ barrier in terms of $\eps$ dependence, and in the case of $\ell_\infty$ regression and $\ell_1$-SVM, we establish overall improvements for some parameter settings in the moderate-accuracy regime. Our results also lead to improved high-accuracy rates for minimizing a large class of convex quartic polynomials.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLT 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers