09/07/2020

The Influence of Shape Constraints on the Thresholding Bandit Problem

James Cheshire, Pierre Menard, Alexandra Carpentier

Keywords: Bandit problems, Convex optimization

Abstract: We investigate the stochastic \emph{Thresholding Bandit problem} TBP under several \emph{shape constraints}. On top of (i) the vanilla, unstructured TBP, we consider the case where (ii) the sequence of arm's means $(\mu_k)_k$ is monotonically increasing MTBP, (iii) the case where $(\mu_k)_k$ is unimodal UTBP and (iv) the case where $(\mu_k)_k$ is concave CTBP. In the TBP problem the aim is to output, at the end of the sequential game, the set of arms whose means are above a given threshold. The regret is the highest gap between a misclassified arm and the threshold. \n In the fixed budget setting, we provide \emph{problem independent} minimax rates for the regret in all settings, as well as associated algorithms. We prove that the minimax rates for the regret are (i) $\sqrt{\log(K)K/T}$ for TBP, (ii) $\sqrt{\log(K)/T}$ for MTBP, (iii) $\sqrt{K/T}$ for UTBP and (iv) $\sqrt{\log\log K/T}$ for CTBP, where $K$ is the number of arms and $T$ is the budget. These rates demonstrate that \textit{the dependence on $K$} of the minimax regret varies significantly depending on the shape constraint. This highlights the fact that the shape constraints modify fundamentally the nature of the TBP.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLT 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers