04/07/2020

Machine Learning-Driven Language Assessment

Burr Settles, Masato Hagiwara, Geoffrey T. LaFlair

Keywords: Machine Assessment, language assessments, natural processing, computer-adaptive testing

Abstract: We describe a method for rapidly creating language proficiency assessments, and provide experimental evidence that such tests can be valid, reliable, and secure. Our approach is the first to use machine learning and natural language processing to induce proficiency scales based on a given standard, and then use linguistic models to estimate item difficulty directly for computer-adaptive testing. This alleviates the need for expensive pilot testing with human subjects. We used these methods to develop an online proficiency exam called the Duolingo English Test, and demonstrate that its scores align significantly with other high-stakes English assessments. Furthermore, our approach produces test scores that are highly reliable, while generating item banks large enough to satisfy security requirements.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers