04/07/2020

Zero-shot North Korean to English Neural Machine Translation by Character Tokenization and Phoneme Decomposition

Hwichan Kim, Tosho Hirasawa, Mamoru Komachi

Keywords: English Translation, Character Tokenization, Phoneme Decomposition, zero-shot approach

Abstract: The primary limitation of North Korean to English translation is the lack of a parallel corpus; therefore, high translation accuracy cannot be achieved. To address this problem, we propose a zero-shot approach using South Korean data, which are remarkably similar to North Korean data. We train a neural machine translation model after tokenizing a South Korean text at the character level and decomposing characters into phonemes.We demonstrate that our method can effectively learn North Korean to English translation and improve the BLEU scores by +1.01 points in comparison with the baseline.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers