04/07/2020

End-to-End Neural Pipeline for Goal-Oriented Dialogue Systems using GPT-2

Donghoon Ham, Jeong-Gwan Lee, Youngsoo Jang, Kee-Eung Kim

Keywords: tracking flow, dialogue systems, human evaluation, End-to-End Pipeline

Abstract: The goal-oriented dialogue system needs to be optimized for tracking the dialogue flow and carrying out an effective conversation under various situations to meet the user goal. The traditional approach to build such a dialogue system is to take a pipelined modular architecture, where its modules are optimized individually. However, such an optimization scheme does not necessarily yield the overall performance improvement of the whole system. On the other hand, end-to-end dialogue systems with monolithic neural architecture are often trained only with input-output utterances, without taking into account the entire annotations available in the corpus. This scheme makes it difficult for goal-oriented dialogues where the system needs to integrate with external systems or to provide interpretable information about why the system generated a particular response. In this paper, we present an end-to-end neural architecture for dialogue systems that addresses both challenges above. In the human evaluation, our dialogue system achieved the success rate of 68.32%, the language understanding score of 4.149, and the response appropriateness score of 4.287, which ranked the system at the top position in the end-to-end multi-domain dialogue system task in the 8th dialogue systems technology challenge (DSTC8).

 0
 0
 0
 1
This is an embedded video. Talk and the respective paper are published at ACL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers