04/07/2020

SeqVAT: Virtual Adversarial Training for Semi-Supervised Sequence Labeling

Luoxin Chen, Weitong Ruan, Xinyue Liu, Jianhua Lu

Keywords: Semi-Supervised Labeling, supervised settings, image classification, image tasks

Abstract: Virtual adversarial training (VAT) is a powerful technique to improve model robustness in both supervised and semi-supervised settings. It is effective and can be easily adopted on lots of image classification and text classification tasks. However, its benefits to sequence labeling tasks such as named entity recognition (NER) have not been shown as significant, mostly, because the previous approach can not combine VAT with the conditional random field (CRF). CRF can significantly boost accuracy for sequence models by putting constraints on label transitions, which makes it an essential component in most state-of-the-art sequence labeling model architectures. In this paper, we propose SeqVAT, a method which naturally applies VAT to sequence labeling models with CRF. Empirical studies show that SeqVAT not only significantly improves the sequence labeling performance over baselines under supervised settings, but also outperforms state-of-the-art approaches under semi-supervised settings.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers