12/07/2020

Neural Network Control Policy Verification With Persistent Adversarial Perturbation

Yuh-Shyang Wang, Tsui-Wei Weng, Luca Daniel

Keywords: Fairness, Equity, Justice, and Safety

Abstract: Deep neural networks are known to be fragile to small adversarial perturbations. This issue becomes more critical when a neural network is interconnected with a physical system in a closed loop. In this paper, we show how to combine recent works on static neural network certification tools with robust control theory to certify a neural network policy in a control loop. We give a sufficient condition and an algorithm to ensure that the closed loop state and control constraints are satisfied when the persistent adversarial perturbation is linf norm bounded. Our method is based on finding a positively invariant set of the closed loop dynamical system, and thus we do not require the continuity of the neural network policy. Along with the verification result, we also develop an effective attack strategy for neural network control systems that outperforms exhaustive Monte-Carlo search significantly. We show that our certification algorithm works well on learned models and achieves 5 times better result than the traditional Lipschitz-based method to certify the robustness of a neural network policy on multiple control problems.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers