12/07/2020

Reinforcement Learning in Feature Space: Matrix Bandit, Kernels, and Regret Bound

Lin Yang, Mengdi Wang

Keywords: Reinforcement Learning - Theory

Abstract: Exploration in reinforcement learning (RL) suffers from the curse of dimensionality when the state-action space is large. A common practice is to parameterize the high-dimensional value and policy functions using given features. However existing methods either have no theoretical guarantee or suffer a regret that is exponential in the planning horizon $H$.In this paper, we propose an online RL algorithm, namely the MatrixRL, that leverages ideas from linear bandit to learn a low-dimensional representation of the probability transition model while carefully balancing the exploitation-exploration tradeoff. We show that MatrixRL achieves a regret bound ${O}\big(H^2d\log T\sqrt{T}\big)$ where $d$ is the number of features, independent with the number of state-action pairs. MatrixRL has an equivalent kernelized version, which is able to work with an arbitrary kernel Hilbert space without using explicit features. In this case, the kernelized MatrixRL satisfies a regret bound ${O}\big(H^2\wt{d}\log T\sqrt{T}\big)$, where $\wt{d}$ is the effective dimension of the kernel space.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers