12/07/2020

Recht-Re Noncommutative Arithmetic-Geometric Mean Conjecture is False

Zehua Lai, Lek-Heng Lim

Keywords: Learning Theory

Abstract: Stochastic optimization algorithms have become indispensable in machine learning. An unresolved foundational question in this area is the difference between with-replacement sampling and without-replacement sampling --- does the latter have superior convergence rate compared to the former? A groundbreaking result of Recht and Re reduces the problem to a noncommutative analogue of the arithmetic-geometric mean inequality where positive numbers are replaced by n positive definite matrices. If this inequality holds for all n, then without-replacement sampling indeed outperforms with-replacement sampling. The conjectured Recht--Re inequality has so far only been established for n = 2 and a special case of n = 3. We will show that the Recht--Re conjecture is false for general n. Our approach relies on the noncommutative positivstellensatz, which allows us to reduce the conjectured inequality to a semidefinite program and the validity of the conjecture to certain bounds for the optimum values, which we show are false as soon as n = 5.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers