12/07/2020

On the Expressivity of Neural Networks for Deep Reinforcement Learning

Kefan Dong, Yuping Luo, Tianhe Yu, Chelsea Finn, Tengyu Ma

Keywords: Reinforcement Learning - Theory

Abstract: We compare the model-free reinforcement learning with the model-based approaches through the lens of the expressive power of neural networks for policies, Q-functions, and dynamics. We show, theoretically and empirically, that even for one-dimensional continuous state space, there are many MDPs whose optimal Q-functions and policies are much more complex than the dynamics. For these MDPs, model-based planning is a favorable algorithm, because the resulting policies can approximate the optimal policy significantly better than a neural network parameterization can, and model-free or model-based policy optimization rely on policy parameterization. Motivated by the theory, we apply a simple multi-step model-based bootstrapping planner (BOOTS) to bootstrap a weak Q-function into a stronger policy. Empirical results show that applying BOOTS on top of model-based or model-free policy optimization algorithms at the test time improves the performance on benchmark tasks.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers