12/07/2020

Statistically Efficient Off-Policy Policy Gradients

Nathan Kallus, Masatoshi Uehara

Keywords: Reinforcement Learning - Theory

Abstract: Policy gradient methods in reinforcement learning update policy parameters by taking steps in the direction of an estimated gradient of policy value. In this paper, we consider the efficient estimation of policy gradients from off-policy data, where the estimation is particularly non-trivial. We derive the asymptotic lower bound on the feasible mean-squared error in both Markov and non-Markov decision processes and show that existing estimators fail to achieve it in general settings. We propose a meta-algorithm that achieves the lower bound without any parametric assumptions and exhibits a unique 4-way double robustness property. We discuss how to estimate nuisances that the algorithm relies on. Finally, we establish guarantees at the rate at which we approach a stationary point when we take steps in the direction of our new estimated policy gradient.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers