12/07/2020

A new regret analysis for Adam-type algorithms

Ahmet Alacaoglu, Yura Malitsky, Panayotis Mertikopoulos, Volkan Cevher

Keywords: Optimization - Convex

Abstract: In this paper, we focus on a theory-practice gap for Adam and its variants (AMSgrad, AdamNC, etc.). In practice, these algorithms are used with a constant first-order moment parameter $\beta_{1}$ (typically between $0.9$ and $0.99$). In theory, regret guarantees for online convex optimization require a rapidly decaying $\beta_{1}\to0$ schedule. We show that this is an artifact of the standard analysis, and we propose a novel framework that allows us to derive optimal, data-dependent regret bounds with a constant $\beta_{1}$, without further assumptions. We also demonstrate the flexibility of our analysis on a wide range of different algorithms and settings.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers