12/07/2020

Representing Unordered Data Using Multiset Automata and Complex Numbers

Justin DeBenedetto, David Chiang

Keywords: General Machine Learning Techniques

Abstract: Unordered, variable-sized inputs arise in many settings across multiple fields. The ability for set- and multiset- oriented neural networks to handle this type of input has been the focus of much work in recent years. We propose to represent multisets using complex-weighted multiset automata and show how the multiset representations of certain existing neural architectures can be viewed as special cases of ours. Namely, (1) we provide a new theoretical and intuitive justification for the Transformer model's representation of positions using sinusoidal functions, and (2) we extend the DeepSets model to use complex numbers, enabling it to outperform the existing model on an extension of one of their tasks.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers