12/07/2020

Inverse Active Sensing: Modeling and Understanding Timely Decision-Making

Daniel Jarrett, Mihaela van der Schaar

Keywords: Accountability, Transparency and Interpretability

Abstract: Evidence-based decision-making entails collecting (costly) observations about an underlying phenomenon of interest, and subsequently committing to an (informed) decision on the basis of accumulated evidence. In this setting, *active sensing* is the goal-oriented problem of efficiently selecting which acquisitions to make, and when and what decision to settle on. As its complement, *inverse active sensing* seeks to uncover an agent's preferences and strategy given their observable decision-making behavior. In this paper, we develop an expressive, unified framework for the general setting of evidence-based decision-making under endogenous, context-dependent time pressure---which requires negotiating (subjective) tradeoffs between accuracy, speediness, and cost of information. Using this language, we demonstrate how it enables *modeling* intuitive notions of surprise, suspense, and optimality in decision strategies (the forward problem). Finally, we illustrate how this formulation enables *understanding* decision-making behavior by quantifying preferences implicit in observed decision strategies (the inverse problem).

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers