12/07/2020

Minimax Rate for Learning From Pairwise Comparisons in the BTL Model

Julien Hendrickx, Alex Olshevsky, Venkatesh Saligrama

Keywords: Supervised Learning

Abstract: We consider the problem of learning the qualities w_1, ... , w_n of a collection of items by performing noisy comparisons among them. We assume there is a fixed ``comparison graph'' and every neighboring pair of items is compared k times. We will study the popular Bradley-Terry-Luce model, where the probability that item i wins a comparison against j equals w_i/(w_i + w_j). We are interested in how the expected error in estimating the vector w = (w_1, ... , w_n) behaves in the regime when the number of comparisons k is large. Our contribution is the determination of the minimax rate up to a constant factor. We show that this rate is achieved by a simple algorithm based on weighted least squares, with weights determined from the empirical outcomes of the comparisons. This algorithm can be implemented in nearly linear time in the total number of comparisons.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers