12/07/2020

Learning the Stein Discrepancy for Training and Evaluating Energy-Based Models without Sampling

Will Grathwohl, Kuan-Chieh Wang, Joern-Henrik Jacobsen, David Duvenaud, Richard Zemel

Keywords: Probabilistic Inference - Models and Probabilistic Programming

Abstract: We present a new method for evaluating and training unnormalized density models. Our approach only requires access to the gradient of the unnormalized model’s log-density. We estimate the Stein discrepancy between the data density p(x) and the model density q(x) based on a vector function of the data. We parameterize this function with a neural network and fit its parameters to maximize this discrepancy. This yields a novel goodness-of-fit test which outperforms existing methods on high dimensional data. Furthermore, optimizing q(x) to minimize this discrepancy produces a novel method for training unnormalized models. This training method can fit large unnormalized models faster than existing approaches. The ability to both learn and compare models is a unique feature of the proposed method.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers