26/04/2020

Truth or backpropaganda? An empirical investigation of deep learning theory

Micah Goldblum, Jonas Geiping, Avi Schwarzschild, Michael Moeller, Tom Goldstein

Keywords: Deep learning, generalization, loss landscape, robustness

Abstract: We empirically evaluate common assumptions about neural networks that are widely held by practitioners and theorists alike. In this work, we: (1) prove the widespread existence of suboptimal local minima in the loss landscape of neural networks, and we use our theory to find examples; (2) show that small-norm parameters are not optimal for generalization; (3) demonstrate that ResNets do not conform to wide-network theories, such as the neural tangent kernel, and that the interaction between skip connections and batch normalization plays a role; (4) find that rank does not correlate with generalization or robustness in a practical setting.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers