26/04/2020

Permutation Equivariant Models for Compositional Generalization in Language

Jonathan Gordon, David Lopez-Paz, Marco Baroni, Diane Bouchacourt

Keywords: Compositionality, Permutation Equivariance, Language Processing

Abstract: Humans understand novel sentences by composing meanings and roles of core language components. In contrast, neural network models for natural language modeling fail when such compositional generalization is required. The main contribution of this paper is to hypothesize that language compositionality is a form of group-equivariance. Based on this hypothesis, we propose a set of tools for constructing equivariant sequence-to-sequence models. Throughout a variety of experiments on the SCAN tasks, we analyze the behavior of existing models under the lens of equivariance, and demonstrate that our equivariant architecture is able to achieve the type compositional generalization required in human language understanding.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers