26/04/2020

On the Equivalence between Positional Node Embeddings and Structural Graph Representations

Balasubramaniam Srinivasan, Bruno Ribeiro

Keywords: Graph Neural Networks, Structural Graph Representations, Node Embeddings, Relational Learning, Invariant Theory, Theory, Deep Learning, Representational Power, Graph Isomorphism

Abstract: This work provides the first unifying theoretical framework for node embeddings and structural graph representations, bridging methods like matrix factorization and graph neural networks. Using invariant theory, we show that relationship between structural representations and node embeddings is analogous to that of a distribution and its samples. We prove that all tasks that can be performed by node embeddings can also be performed by structural representations and vice-versa. We also show that the concept of transductive and inductive learning is unrelated to node embeddings and graph representations, clearing another source of confusion in the literature. Finally, we introduce new practical guidelines to generating and using node embeddings, which further augments standard operating procedures used today.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers