26/04/2020

Don't Use Large Mini-batches, Use Local SGD

Tao Lin, Sebastian U. Stich, Kumar Kshitij Patel, Martin Jaggi

Keywords:

Abstract: Mini-batch stochastic gradient methods (SGD) are state of the art for distributed training of deep neural networks. Drastic increases in the mini-batch sizes have lead to key efficiency and scalability gains in recent years. However, progress faces a major roadblock, as models trained with large batches often do not generalize well, i.e. they do not show good accuracy on new data. As a remedy, we propose a \emph{post-local} SGD and show that it significantly improves the generalization performance compared to large-batch training on standard benchmarks while enjoying the same efficiency (time-to-accuracy) and scalability. We further provide an extensive study of the communication efficiency vs. performance trade-offs associated with a host of \emph{local SGD} variants.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers