26/04/2020

Overlearning Reveals Sensitive Attributes

Congzheng Song, Vitaly Shmatikov

Keywords: privacy, censoring representation, transfer learning

Abstract: ``"Overlearning'' means that a model trained for a seemingly simple objective implicitly learns to recognize attributes and concepts that are (1) not part of the learning objective, and (2) sensitive from a privacy or bias perspective. For example, a binary gender classifier of facial images also learns to recognize races, even races that are not represented in the training data, and identities. We demonstrate overlearning in several vision and NLP models and analyze its harmful consequences. First, inference-time representations of an overlearned model reveal sensitive attributes of the input, breaking privacy protections such as model partitioning. Second, an overlearned model can be "`re-purposed'' for a different, privacy-violating task even in the absence of the original training data. We show that overlearning is intrinsic for some tasks and cannot be prevented by censoring unwanted attributes. Finally, we investigate where, when, and why overlearning happens during model training.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers