26/04/2020

Ridge Regression: Structure, Cross-Validation, and Sketching

Sifan Liu, Edgar Dobriban

Keywords: ridge regression, sketching, random matrix theory, cross-validation, high-dimensional asymptotics

Abstract: We study the following three fundamental problems about ridge regression: (1) what is the structure of the estimator? (2) how to correctly use cross-validation to choose the regularization parameter? and (3) how to accelerate computation without losing too much accuracy? We consider the three problems in a unified large-data linear model. We give a precise representation of ridge regression as a covariance matrix-dependent linear combination of the true parameter and the noise. We study the bias of $K$-fold cross-validation for choosing the regularization parameter, and propose a simple bias-correction. We analyze the accuracy of primal and dual sketching for ridge regression, showing they are surprisingly accurate. Our results are illustrated by simulations and by analyzing empirical data.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers