06/12/2021

Regime Switching Bandits

Xiang Zhou, Yi Xiong, Ningyuan Chen, Xuefeng GAO

Keywords: reinforcement learning and planning, bandits, online learning

Abstract: We study a multi-armed bandit problem where the rewards exhibit regime switching. Specifically, the distributions of the random rewards generated from all arms are modulated by a common underlying state modeled as a finite-state Markov chain. The agent does not observe the underlying state and has to learn the transition matrix and the reward distributions. We propose a learning algorithm for this problem, building on spectral method-of-moments estimations for hidden Markov models, belief error control in partially observable Markov decision processes and upper-confidence-bound methods for online learning. We also establish an upper bound $O(T^{2/3}\sqrt{\log T})$ for the proposed learning algorithm where $T$ is the learning horizon. Finally, we conduct proof-of-concept experiments to illustrate the performance of the learning algorithm.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers